DATA BASE FORMATION AND ASSESSMENT OF BIOTIC AND ABIOTIC PARAMETERS ASSOCIATED WITH ARTIFICIAL REEFS

by
Stephen A. Bortone
and
Doyal Van Orman

DATA BASE FORPMATION AND ASSESSMENT OF BIOTIC AND ABIOTIC PARAMETERS ASSOCIATED WITH ARTIFICIAL REEFS

by
Stephen A. Bortone

and
Doyal Van Oman

Biology Department
University of West Florida Pensacola, Florida 32514

Project No. IR-83-12

Technical Papers are duplicated in limited quantities for specialized audiences requiring rapid access to infomation and may receive only limited editing. The text of this paper is retyped exactly from copy provided by the senior author. This paper is provided by the Florida Sea Grant College with support from NOAA Office of Sea Grant, U.S. Department of Commerce, grant number NA80AA-D-00038. It was published by the Sea Grant Extension Service, John T. Woeste, Dean, in conducting Cooperative Extension work in Agriculture, Home Economics, and Marine Sciences, State of Florida, U.S. Department of Agriculture, U.S. Department of Commerce, and Boards of County Commissioners, cooperating. Printed and distributed in furtherance of the Acts of Congress of May 8 and June 14, 1914. The Florida Sea Grant College is an Equal Employment Opportunity-Affirmative Action employer authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, color, sex, or national origin.

TECHNICAL PAPER NO. 35
July 1985

EDITOR'S NOTE: A companion study, "Biological Survey and Analysis of Florida's Artificial Reefs," by Stephen A. Bortone and Doyal Van Orman is published in Technical Paper No. 34, July 1985.

INTRCDUCTION

There is a critical need for accurate data in order to make decisions regarding the construction, emplacement, and further development of artificial reefs in the State of Florida. The past, present and potential importance of artificial reefs as a center for recreational and commercial fishing activities as well as a solution to problems in management and conservation of marine fisheries has a direct affect on Florida's economy. At a meeting of Florida Sea Grant's Reef Advisory Committee it was made clear through discussion with the committee members that florida needs to be able to make intelligent and rational decisions concerning the emplacement of artificial reefs. A problem arises, however, in the fact that there are too few data available on which to base these decisions.

Through our continued discussions a point was made which might help solve same of the immediate problems in the decision-making and evaluation process as well as indicate the future needs regarding needed research on artificial reefs. This has to do with detemining what data on artificial reef biology were available and then an evaluation of those data. A data matrix listing reefs on the vertical axis and the associated biotic and abiotic data or attributes available from published and non-published sources on the horizontal axis would permit several goals of our initial investigations into the future of artificial reef research to be realized; 1) a compilation of what data were available; 2) an indication of the completeness and extensiveness of the data; 3) a summary of the descriptive statistics of the data; 4) a preliminary analysis of the relationship among the biotic and abiotic parameters through correlation analysis; 5) some preliminary modeling of the artificial reefs to form the basis of prediction through stepwise and multiple linear regression analysis. This compilation, description and analysis would give those of use interested in understanding the present state-of-knowledge, the current status of available research, and questions which should be posed a perspective on the entire subject.

This study is to be used in concert with two other Florida Sea Grant College sponsored research projects: one dealing with an annotated bibliography of most of the available literature known to refer to artificial reefs; and another review paper summarizing the past research on artificial reefs as well as indicating trends and future needs in artificial reef research. The present study when coupled with the other two studies will give investigators interested in the development and future status of Florida's artificial reefs a distinct advantage in planning future research so that it will be efficient, significant, and useful to all those interested in this potentially valuable resource.

MATERIALS AND METHODS

A careful search was made to find sources of data for the matrix. Although there are literally thousands of articles written on artificial reefs, our prime concern was to find articles in which a field study had been conducted which addressed both biological and non-biological data. A second concern was to obtain data from studies relevant and applicable to florida zoogeographic areas. Therefore, our main emphasis was on studies conducted in the Carolinian province, and in the subtropical and tropical Western Atlantic.

Studies from areas outside those mentioned above were considered if they were particularly complete and/or if they were from areas where at least comparisons might be made on the family or the generic level.

In total, data were obtained from 177 reefs primarily from Florida and the southeastern coastal areas of the United States. These reefs were listed on the vertical axis, and their associated physical and biological parameters were listed horizontally. The physical data were obtained directly from the research sources or, as in many cases because the data were incomplete or lacking, the data were supplemented from other sources. Below are presented the physical parameters considered in this report along with the code used in the computer printout found in the appendix, the criteria for inclusion, definition of units, and source of infomation.

Each reef was assigned a five digit identification number. The first two digits of the number indicate the state in which the reef is located. The third digit gives its geographic area (generally follows those areas from the Florida Artificial Reef Atlas), and the final two digits identify the specific site. For permitted reefs in Florida the areas and sites correspond to the numbers listed in the Atlas of Artificial Reefs published by Florida Sea Grant, Non-permitted Florida reefs and reefs located in other states can be identified from the literature references.

The state legend is as follows:

$00-$ Florida	01 - Maine
02 - New Hampshire	03 - Massachusetts
04 - Rhode Island	05 - Connecticut
06 - New York	07 - New Jersey
08 - Delaware	09 - Maryland
10 - Virginia	11 - North Carolina
12 - South Carolina	13 - Georgia
14 - Alabama	15 - Mississippi
16 - Louisiana	17 - Texas
18 - California	19 - Oregon
20 - Washington	21 - Hawaii
22 - Mexico	23 - Puerto Rico
24 - Virgin Islands	25 - All others

The following is a listing of reef identification numbers with references to the literature cited:
Reef Number
00348
00429
$00634 / 00640$
00635
00636
$00637 / 00638$
00639
$07011 / 07111 / 12011$
12010
14001

Literature

Stone et al., 1979
Smith et al., 1979
Hastings, 1979
Bortone, 1976
Wickham et al., 1973
Hastings et al., 1976
Kl ima and Wickham, 1969
Steimle and Ogren, 1982
Parker et al., 1979
Crozier et al., 1977

15001
16001
18001/18002/18003
20008
20010
23001
24001

Lukens, 1981
Sonneir et al., 1976
Turner et al., 1969
Walton, 1982
Hueckel and Slayton, 1982
Fast, 1974
Randall, 1963

Below are listed the headings on the computerized data matrix as printed in the appendix:

YR-BLT: Year built, usually determined from Florida Sea Grant's Atlas of Artificial Reefs (Aska and Pybas, 1983).

MATERIALS: Primary material of which the reef was composed:

$A=$ Aluminum	$P=$ Plastic or fiberglass
$R=$ Rubber tires	$F=$ Fish aggregating device
$C=$ Cement	$N=$ Natural materials (rocks)
$S=$ Steel	$W=$ Wood

PROFILE: $\quad H=$ High, $L=$ Low, $S=$ Special
The profile should be a ratio of height to water depth, but for our purposes structures such as boats, barges, ships, or other vessels were considered to have high profile. Rubber, tires, etc., were considered to have low profile. The category "special" indicates mid-water fish attractors such as those used by Klima and Wick
ham (1971).
AREA:
Recorded as M^{2} when available.
DEPTH:
SUBSTRATE:

DST-SHORE:
DRAINAGE:

Recorded as: $S=$ sand; $M=$ mud; $G=$ gravel; $C=$ coral; $R=$ rocks; $1=$ shell material; $V=$ vegetation.

Nearest landfall in nautical miles.
Each major watershed for the Florida coastal area was assigned an identifying number:

1	$=$ Nassua Sound	2	$=$ St. Johns Rivers
3	$=$ Iol amato River	4	$=$ Mantanzas River
5	$=$ Halifax River	6	$=$ Banana River
7	$=$ Indian River	8	$=$ Lake Worth
9	$=$ Biscayne Bay	10	$=$ Florida Bay
11	$=$ San Carlos Bay	12	$=$ Charlotte Harbor
13	$=$ Tampa Bay	14	$=$ Waccasassa Bay
15	$=$ Suwannee River	16	$=$ Deadman Bay

	17 = Apalachee Bay 18 = Apalachicola Bay $19=$ St. Andrews Bay $20=$ Choctawhatchee Bay 21 = Pensacola Bay 22 = Perdido Bay $23=$ Mobile Bay $\quad 24=$ Mississippi Sound 25 = Big Marco River
	A drainage code was then assigned to each reef based on its proximity to that drainage.
DST-PASS:	Distance in nautical miles to the pass or entrance of the closest drainage.
DRAIN-VOL:	Mean volume of discharge of the nearest drainage in cubic feet per second. Sources for the drainage information was State Univ. System of Florida Institute of Oceanography (1973), U.S. Dept. of Interior (1975), and U.S. Dept. of Comm. (1980).
DST-100F	Distance in nautical miles to the 100 fathom depth. Plotted and measured from NOAA charts 1:80000 and 1:486200.
WIND-DIR:	Predominant wind direction. The direction in degrees from which the wind most often blows. Obtained from Bureau of Land Management charts, Outer Continental Shelf, Eastern Gulf of Mexico, Visual No. 6.
WIND-VEL:	Mean wind velocity recorded in nautical miles per hours (knots). Obtained from Bureau of Land Management charts, Outer Continental Shelf, Eastern Gulf of Mexico, Visual No. 6.
LATITUDE:	Latitude of the site recorded as $x x$ degrees $x x$ minutes xx seconds.
CURR-DIR:	Resultant water current entered in degrees. Recorded as the direction the current sets and obtained from Bureau of Land Management charts, Outer Continental Shelf, Eastern Gulf of Mexico, Visual No. 6.
TIDE-TYPE:	$S=$ semidiurnal $; D=$ diurnal; $M=$ mixed. Obtained from Fernald (1981).
TIDAL-VA:	Tidal variation. No data were obtained for this category.
W-STMP-L:	Lowest winter surface temperature. Entered in Farenheit.
W-STMP-H:	Highest winter surface temperature.
W-STMP-A:	Average winter surface temperature.

S-STMP-I:	Lowest summer surface temperature.
S-STMP-H:	Highest summer surface temperature.
S-STMP-A :	Average summer surface temperature.
W-B TMP-L:	Lowest winter bottom temperature.
W-BTMP-H:	Highest winter bottom temperature.
W-BTMP-A:	Average winter bottom temperature.
S-BTMP-L:	Lowest summer bottom temperature.
LONGITUD:	Longitude entered as $x x$ degrees $x x$ minutes $x x$ seconds.
S-BTMP-H:	Highest summer bottom temperature.
S-STMP-A:	Average summer bottom temperature.
W-SSAL-L:	Lowest winter surface salinity recorded as part per thousand.
W-SSAL-H:	Highest winter surface salinity.
W-SSAL-A:	Average winter surface salinity.
S-SSAL-L:	Lowest summer surface salinity.
S-SSAL-H:	Highest summer surface salinity.
S-SSAL-A:	Average summer surface salinity.
W-BSAL-L:	Lowest winter bottom salinity.
W-BSAL-H:	Highest winter bottom salinity.
W-BSAL-A:	Average winter bottom salinity.
S-BSAL-L:	Lowest summer bottam salinity.
S-BSAL-H:	Highest summer bottom salinity.
S-BSAL-A:	Average summer bottom salinity.
WINTER:	Total number of individuals within each family by reef for Dec., Jan., and Feb.
SUMMER:	Total number of individuals within each family by reef for June., Jul., and Aug.
WIN-SUM:	The combined sums of the above.

LWIN: Logarithoi scale of winter abundance.
LSUM: Logarithm scale of summer abundance.
LWIN-LSUM: Logarithm scale of combined winter and summer abundance.

Species identified in the literature were arranged according to the Hoese, Moore, and Sonneir (1977) classification scheme. Those species not included in their publication were entered at the end of appropriate families. In cases where information was incomplete only the family identification code was used. These data were recorded for each reef with he reported abundance entered for each species in the appropriate season in which the data were collected. This provided abundance figures by seasons for each species by reef. If seasonal infomation was lacking, the abundance was entered as anmual data. In instances where abundance was reported in qualitative terms numerical values were substituted for comparative analysis purposes. The numeric values uses were: rare $=1$; moderate or occasional $=10$; common or frequent $=100$; and abundant $=1000$.

For analysis the biological data set was reduced to four families which are represented by the following codes: 54 = Serranids; 62 = Carangids; $65=$ Lutjanids; and $68=$ Haemulids. These families represent the majority of reef target species sought by recreational fishemen, and most often addressed in terms of reef fisheries management. The summer and winter seasons were selected for analysis because the greatest amount of biological abundance data was recorded for those seasons by the majority of the most thorough studies.

RESULTS

Physical parameters were obtained on 177 artificial reefs. of these, 155 were pennitted florida reefs, and the remainder from other states, Puerto Rico, and the Virgin Islands. The camposition of these structures was predaninantly steel, a combination of steel, rubber, and concrete (mixed), or concrete (Fig. 1). Their physical attributes indicate a broad variance in most features (Table 1). It is noted that the reef areas, considered one of the most important factors by Smith (1972) and Walton (1982), was only addressed by seven of the studies. Other prominent factors such as the height of the structures, their cryptic nature, and accurate evaluations of the compositions of the substrate upon which they were placed were so few and varied that they had to be estimated and recorded in qualitative terms. As such they could not be used as part of the descriptive statistics of physical features or in the data matrix for analysis.

Of the 177 artificial structures for which physical data were available, only 23 provided biological information which paralleled our needs. 0ut of these 23 reefs, only nime were noted in Florida coastal waters, and only one study addressed a (1) Florida permitted reef (Smith et. al., 1979). Four of the other studies were conducted within the Carolinian province, and two in the tropical Western Atlantic. The remaining eight studies encompassed other coastal areas of the United States.

Reduction of the biotic data to four key families with abundance figures for winter and/or summer periods resulted in lowering the number of studies containing usable information to 11 reefs (Crozier et. al., 1977; Fast, 1974; Hastings, 1979; Hastings et. al., 1976; Klima and Wickham, 1969; Randall, 1963; Steimle and Ogren, 1982; Stone et. al., 1979; Wickham et. al., 1973). To complicate matters, two studies (on three separate reefs) presented abundance data in qualified terms such as rare, common, etc., and necessitated the conversion of the figures to a log scale for purposes of analysis (Crozier et. al., 1977; Hastings et. al., 1976). One study covering three reefs recorded only five species for each reef (Steimle and Ogren, 1982). The overall effect was that out of the reduced data, a combination of six to nine studies (depending on whether or not they contained data for all families for both seasons) were used for analysis (Table 2).

Correlation coefficient analysis was used to indicate relationships between biotic and abiotic variables associated with the reefs (Appendix). Correlations which were noted as significant (. 05 level) are presented by family.

SERRANIDS

Winter abundance was negatively correlated with: river drainage volume, winter surface salinity, and summer surface salinity. Summer abundance was negatively correlated with winter surface salinity.

CARANGIDS

Winter abundance was negatively correlated with drainage volume, current velocity, winter surface salinity, and summer surface salinity. Winter abundance was positively correlated with distance from 100 fathoms.

LUTJANIDS

Both winter and summer abundance were positively correlated with depth and distance from shore.

HAEMULIDS
Winter abundance was negatively correlated with drainage volume and current velocity. Both winter and summer abundance was positively correlated with year built and winter surface temperature.

In most instances, family abundance was correlated to non-controllable factors such as drainage volume, temperature, salinity, and current velocity. The Lutjanids were the only family for which there were correlations (depth and distance to shore) that could be controlled by persons constructing artificial reefs.

Stepwise regression and attempts to build a predictive model using multiple linear regression were unsuccessful because of the number of missing data in the cells of the matrix.

DISCUSSION

There is no shortage of literature which addresses artificial reefs, and while many of the studies were designed to accomplish certain goals in artificial reef research most were not directed to support the type of infomation needed in this investigation. Within the available publications there exists a definite lack of continuity in the way researchers assess standing crops and present the results of their investigations.

Different methods of measuring the density and diversity of artificial reef communities include timed and non-timed spot counts, transect evaluations, kill and collect results, and hook and line assessments. Variations in the time frames in which the studies were conducted covered single and short tem limited observations, seasonal studies with several assessments, and controlled samplings at regular intervals over extended periods.

The contrast in fomats used in reporting the results of the studies was also significant. Some studies reported only on the target species on a reef while others recorded all species observed, but failed to provide abundance data or presented the infomation in qualitative terms. Other methods included reporting seasonal abundance as it was collected and recorded, or consolidating the results of extended efforts into one figure which ignored the impact of seasonal fauna changes. Few thoroughly addressed the influence of physical features to biological observations. This resulted in many missing cells in the data matrix and prevented analysis using stepwise and multiple linear regression.

These are examples of the variations in methodology which serve to adversely influence results of data combined from a wide range of sources. Considered in concert with the results of the data reduction and statistical analysis, it appears that the variations in sampling techniques and reporting methods would cause non-representative results.

CONCLUSIONS

Wide variations in the methodology in existing literature make it impossible to construct a data matrix and mathematical model which will be useful in predicting fish populations on artificial reefs. A consistent point which appeared as a result of our efforts is that a common or convertible method of collecting and reporting data is necessary if we expect to rely upon each other's research result for infomation useful in interpreting conditions and making decisions concerning management and research.

While this investigation failed to establish a functional data base, it provided other significant infomation. It helped provide valuable insight into our present status in evaluating artificial structures, the wide range of efforts being expended on artificial reef research by the scientific community, and a direction in which to proceed to attain our future research goals. It exemplified the need to construct a data matrix for use as a tool in directing further functional research, and established the necessary methodology with which it can be initiated. Then, as more and better data are produced, it will be possible to construct a predictive mathematical model.

Most of all, the results clearly show that a concerted, unified effort is needed if research is to proceed in a positive direction which will lead to the proper answers for successful management of our marine resources.

LITERATURE CITED

Aska, D. Y., and D. W. Pybas. 1983. Atlas of artificial reefs in florida. Florida Sea Grant College, 15 p .

Bortone, S. A. 1976. Effects of a hurricane on the fish fauna at Destin, Florida. Florida Sci. 39(4): 245-248.

Buckley, R. M. 1982. Marine habitat enhancement and urban recreational fishing in Washington. Mar. Fish. Rev. 44(6-7): 28-37.

Crozier, G. F., R. L. Shipp, T. McIlwain, N. J. Doorenbos, D. L. Daniels, L. E. Brown, D. Dean, E. E. Jones, D. Clarke, J. Vebelacker, R. Lukens, and J. Booker. 1977. Devel opment of Gulf Coast Artificial Reefs. In Final Report: NOAA/Sea Grant 04-5-158-54-07 (1). 33 p.

Fast, D. E. 1974. Comparative studies of fish species and their populations on artificial and natural reefs off southwestern Puerto Rico. M.S. Thesis, Univ. Puerto Rico, Rio Piedras. 90 p.

Fernald, E. A. Ed. 1981. Atlas of Florida. 276.p.
Hastings, R. W. 1979. The origin and seasonality of the fish fauna on a new jetty in the northeastern Gulf of Mexico. Bull. Florida State Mus., Biol. Sci. 24(1): 1-222.

Hastings, R. W., L. H. Ogren, and M. T. Mabry. 1976. Observations on the fish fauna associated with offshore platforms in the northeastern Gulf of Mexico. Fish Bull. 74(2): 387-402.

Hoese, H. D., R. H. Moore, and V. F. Sounier. 1977. Fishes of the Gulf of Mexico. 327 p .

Hueckel, G. J., and R. L. Stayton. 1982. Fish foraging on an artificial reef in Puget Sound, Washington. Mar. Fish. Rev. 44(6-7): 38-44.

Klima, E. F., and D. A. Wickham. 1969. Attractions of coastal pelagic fishes with artificial structures. Trans. Amer. Fish. Soc. 100(1): 86-99.

Lukens, R. R. 1981. Ichthyofaunal colonization of a new artificial reef in the northwestern Gulf of Mexico. Gulf Research Report 7(1): 41-46.

Parker, R. 0., Jr., R. B. Stone, and C. C. Buchanan. 1979. Artificial reefs off Murrells Inlet, South Carolina. Mar. Fish. Rev. 41(9): 12-24.

Randall, J. E. 1963. An analysis of the fish populations of artificial and natural reefs in the Virgin Islands, Carib. J. Sci. 3(1): 31-47.

Smith, G. B., D. A. Hensley, and H. H. Mathews. 1979. Comparative efficacy of artificial and natural Gulf of Mexico reefs as fish attractants. Florida Mar. Research Pub., No. 35, p. 7.

Smith, L. 1972. Construction and studies of an artificial reef of Brunswick, Georgia. Proceedings of sport fishing seminar, Coastal Plains Center for Marine Development Services, Seminar Series 1: 5-6.

Sonneir, F., J. Tierling, and H. D. Hoese. 1976. Observations on the offshore reef and platform fish.fauna of Louisiana. Copeia 1: 105-111.

State University System of Florida, Institute of Oceanography. 1973. A summary of knowledge of the eastern Gulf of Mexico.

Steimle, F. W., Jr., and L. Ogren. 1982. Food fish collected on artificial reefs in the New York bight and off Charleston, South Carolina. Mar. Fish. Rev. 44(6-7): 49-52.

Stone, R. B., H. L. Pratt, R. 0. Parker, Jr., and G. E. Davis. 1979. A comparison of fish populations on an artificial and natural reef in the Florida Keys. Mar. Fish. Rev. 41(9): 1-11.

Turner, C. H., E. E. Ebert, and R. R. Givens. 1969. Man-made reef ecology. Calif. Dept. Fish Game, Fish Bull. 146, 221 p.
U. S. Department of Conmerce. 1980. Eastern U.S. coastal and ocean zones data atlas. Office of Coastal Zone Management, U.S. Dept. of Comm., Washington, D.C.
U.S. Department of Interior. 1975. Bureau of Land Management. Compilation of historical and existing physical oceanographic data from the eastern Gulf of Mexico. Bureau of Land Management Contract No. 08550-014-16. 97p.

Walton, J. W. 1982. The effects of an artificial reef on resident flatfish populations. Mar. Fish. Rev. 44(6-7): 45-48.

Wickham, D. A., J. W. Watson, Jr., and L. H. Ogren. 1973. The efficacy of midwater artificial structures for attracting pelagic sport fish. Trans. Am. Fish. Soc. 102(3): 563-572.

Woodhead, P. M. J., J. H. Parker, and I. W. Duedall. 1982. The coal-waste artificial reef program (C-WARP): A new resource potential for fishing reef construction. Mar. Fish. Rev. 44(6-7): 16-23.

FIGURE I.

TABLE 1. DESCRIPTIVE STATISTICS OF THE PHYSICAL FEATURES FOR 177 ARTIFICIAL REEFS					
VARIABLE	N	X	SD	MIN	MAX

[^0]TABLE 2. DESCRIPTIVE STATISTICS FOR THE NUMBER OF INDIVIDUALS OF FOUR MAJOR
FAMILIES OF FISHES OCCURRING ON ARTIFICIAL REEFS DURING THE SUMMER AND (IN PARENTHESES) WINTER SEASONS

FAMILY	NO. OF STUDIES	NO. OF INDIVIDUALS	SD	MIN	MAX
Serranidae					
Groupers/Seabasses	$\begin{gathered} 9 \\ (6) \end{gathered}$	$\begin{gathered} 369 \\ (343) \end{gathered}$	$\begin{gathered} 580 \\ (582) \end{gathered}$	$\stackrel{2}{2}_{1}$	$\begin{gathered} 1502 \\ (1501) \end{gathered}$
Carangidae					
Jacks	$\begin{gathered} 8 \\ (6) \end{gathered}$	$\begin{gathered} 1340 \\ (1012) \end{gathered}$	$\begin{array}{r} 1434 \\ (1096 \end{array}$	$\begin{aligned} & 15 \\ & (0) \end{aligned}$	$\begin{gathered} 4000 \\ (2022) \end{gathered}$
Lutjanidae					
Snappers	$\begin{gathered} 7 \\ (6) \end{gathered}$	$\begin{gathered} 613 \\ (359) \end{gathered}$	$\begin{gathered} 983 \\ (804) \end{gathered}$	$\begin{gathered} 0 \\ (0) \end{gathered}$	$\begin{gathered} 2101 \\ (2000) \end{gathered}$
Haemulidae					
Grunts	$\begin{gathered} 7 \\ (6) \end{gathered}$	$\begin{aligned} & 1257 \\ & (774) \end{aligned}$	$\begin{gathered} 750 \\ (759) \end{gathered}$	$\begin{aligned} & 50 \\ & (6) \end{aligned}$	$\begin{gathered} 2010 \\ (2000) \end{gathered}$

APPENDIX

Physical and Biological Data
 and
 Correlation Coefficient Analysis

OHS	hese	EAMty	vinter	SUS마E:	Vin_sum	LVIM	LSUM	LVIM_Sth
1	1134	51	11	13	14	2.7681	6.2111	1.1771
1	1314	62	13	15	31	2.1341	1.2511	1.3941
3	(1341	15	1	15	19	1.4931	5.1351	5.1470
1	9134t	4	114	1201	1675	14.0116	19.1517	24. 2501
1	10634	54	7	+	16	2.1141	2.1111	1.4198
1	00634	11	0	は	65	.	1.364]	1.5603
1	10634	4	0	0	0			
1	08634	4	4	50	56	1.1111	3.1120	1.1251
1	11636	11		300			13.1155	
10	00637	$: 1$	311	100	111	16.1141	11.1217	20.5954
11	10637	4	1012	1510	3522	16.1111	31.2362	360303
:2	01697	45	111	2081	1112	6.976	13.115s	14.113
iJ	00137	18	1810	1000	2010	1.2109	6.9871	9.9135
i4	00631	54	231	112	1154	161111	10.1233	23.4165
: 5	10631	42	:022	:120	1112	114107	31414	40.1172
14	00131	15	10	i11	151	(1417	9.2103	11.111
17	01613	18	1101	2010	3111	11.5121	16.1111	1781819
18	60631	12		4000	.	.	21.1110	
11	07011	51		7			1.1159	
10	11011	31		10			1.1307	
T1	11001	54	1501	1502	3083	21.1334	19.9336	34.745
$: 1$	1606	11	2000	2111	$11: 1$	13.1155	20.313	21.1011
:3	14061	15	2000	1:0:	1109	13.6155	11.1207	19.1870
24	1500:	11	2000	2003	1000	13.159	131155	15.2011
13	i300t	34	1	2	3	0.0000	- 0000	01131
24	i30e:	6	15	100	315	27011	17031	3. 7536
$: 7$	23001	45	11	11	31	23624	5 1193	11819
16	2109:	4	34	43	697	4.3135	114970	15 1421
i)	24901	S4		19			11.1014	
30	1000	45		15			3.1181	
31	21031	4		117:			16718:	

			\cdots				5		D	0	0	0	v	v		6	c	:	I	V	V	\pm	5	5	5	v		5
			1	?			v	5	R	5	1	5	1	1	λ	U	4	1	1	-	-		-		-			
		\dagger	i	n			1	T	/	\dagger	1	T	1	N	T	R	2	v	-	5	1	5	\$	5	5	1		1
		1	I	0		0	5	-	t	-	1	-	0	0	1	1	t	E	1	T	T	T	T	T	I	T		T
	R	-	1	F	1	I	1	5	N	P	H	1	-	-	\dagger	-	-	-	t	H	\%	\cdots	K	K	1	${ }^{\prime}$		${ }^{1}$
1	:	4	;	i	R	「	1	H	λ	1	-	0	0	v	"	0	v	T	-	1	P	?	P	?	\%	\%		P
:	¢	6	1	i	E	T	h	${ }^{\text {k }}$	\checkmark	5	v	1	!	E	0	i	t	I	V	-	-	-	-	-	-			
3	;	-	:	i	\downarrow	n	-	t	I	s	0	f	π	!	I	1	6	?	\wedge	1	H	1	:	4	A	H		

1054	74	5	H			5	
16001	34	5	${ }^{4}$			5	
14031	75	5	4			5	
14001	71	5	H			5	
13001	1	A	:	145	10	5	1.36
21015	$7:$	8	b	Lis	14	5	1. 51
29081	11	1	:	115	20	5	1.50
23001	7:	1	!	15)	71	5	319
14001	60	6	L	51.	\dagger	6	1. 64
\pm (1)	d ${ }^{\text {d }}$	t	[50	1	6	0.14
: $88 \$ 1$	64	5	t	54	1	C	1.86

$\begin{array}{llllllll}11001 & 60 & C & L & 54 & \dagger & C & 1.64 \\ \pm 150 & 14 & C & 5 & 50 & C & 6.06\end{array}$

	L	3	5	v	Y	v	5	5	S	U			5	5	5								L
	0			-	-		-	-	-	-	-	-	-	-	-				W				4
	1	1	E	5	5	5	5	5	5	B	1	3	\underline{L}	d	8	E	*	5	1				i
	4	i	T	5	5	\$	5	5	5	5	3	5	5	s	5	λ	!	v	N				$!$
	:	H	\%	λ	\cdots	4	4	1	1	n	1	2	1	1	1	H	\cdots	1	-	L		1	-
2	T	P	P	L	:	L	1	5	L	-	5	1	1	\checkmark	L	1	T	M	3	v		5	5
8	4		-		-	-	-	-	-	-	\cdots	-	-	-	-	t	[E	U	1		U	U
3	5	N	1	E	H	4	t	3	1	\checkmark	4	1	$:$	4	λ	7	\%	ค	M	N		H	H
\therefore																$: 1$	150	:9:	1003	29. 9134	24.	9334	347534
:																42	+400	:111	t:1!	13 1135	24	1213	12.1834
:																45	:980	7\%1	110:	1] 1195	14	120\%	i1.1077
:4																4	1460	1096	\$084	47 1159	11	1155	15.1011
15	2.11:															31	1	:	9	0. 0100	4	040	0.6111
:	113.5															il	13	100	3:3	2.814	5	1034	37524
:	19\%1:															45	:1	:	$3:$	13016	9	1930	+146\%
:	2719:					.										14	11	413	467	51115	41	1974	151431
: ${ }^{2}$																51		4 -			: 1	8810	
is																45		?			1	159	
-																B 1		18:			it	719	

MEAGED PHYSICAS ANO REDUCED DTO OREA thatitist

Whilatie	N	Mrin		sti der	SUM	himimun	RAIIHM
	-	418716157		11434194	180.70040000	19	\because
dece	*	155 900tbiti	151	0511474	126. 40000408	11	145
35\%	:	P: 37518109		343931:7	11980000000	,	31
93T_Ertr	8	36104084	,	$1+11419$	11.8185006	1	il
25:_r 255	;	1:230060t	\checkmark	146:424	1817000400	2	: 1
	3	7016 64,467	114	4-42343i	21086.80040008	136	1352
*55.ine	;	$31: 30000$	10	136946	197 90006000	S	30
WHE_VE:	ง	11 178030010	1	15808090	14 30400001	$1:$	$1 ;$
COR1_VIL	!	02733319	1	6577393	0.70840900	\bigcirc	0
V_s-u**	1		-	14604:4	25 mosobn	8	11
S_5mp_d	4	149000008		*	134 coopgeot	14	84
V 55A: ${ }^{\text {a }}$	1	11.6061683	1	1319054	1040004040	34	31
3_35dt_	i	3413131113		:*3543:	103 00640090	if	31
witer	3	3130131313	511	11961693	20.10000080	1	: 0 : 0
Wi*	4	(1) 2713:7		.0031539	473159416	4	16
53208	9	1+9 1139153	518	t130193	1514.00080600	;	:507
Tissm	'	174 :364306?	279	236419	312: 20080000	3	3003
-564	1	1397620]	id	: $960: 31$	178858.560	0	3
4:3034	:	. 5 S:39!4		dictras	131378380	!	3

 Fhalifitil

HEAH
5.3 0EY $5 \sqrt{17}$

13	4080484			9:311:
: 5	0908084		$1: 1$	4: 14:19
??	-064647		*	:2049?
J	20.3talos		1	1tes340
4	5259t000		;	14.637t
3811	646467		i: $: 1$	-10249\%
14	47500464		$i 8$:34t.17
!	: Tetocou		\%	2302003
4	2151311		*	$0: 713509$
4	: 3 90500*		:	17974:
14	\%040日tic			!
	-			
14	*4446:		i	: 1700:
11	13i3311		i	5**301:
734	246166?		- 3	:\% 516:
7	45641564.	-	\cdots	791:49?
$\because 1$	59121:		$4 \pm$	- \% -
: 714	: 4 4046?	-	14 ?	1949\%44
: $:$:291609:		!	4: 3 319
	6) 3 :2:		*	S:4tit:

[^0]: *Nautical Miles
 **Knots

